A Single Heterochromatin Boundary Element Imposes Position-Independent Antisilencing Activity in Saccharomyces cerevisiae Minichromosomes

نویسندگان

  • Sangita A. Chakraborty
  • Robert T. Simpson
  • Sergei A. Grigoryev
چکیده

Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleosome-positioning sequence repeats impact chromatin silencing in yeast minichromosomes.

Eukaryotic gene expression occurs in the context of structurally distinct chromosomal domains such as the relatively open, gene-rich, and transcriptionally active euchromatin and the condensed and gene-poor heterochromatin where its specific chromatin environment inhibits transcription. To study gene silencing by heterochromatin, we created a minichromosome reporter system where the gene silenc...

متن کامل

CEP3 encodes a centromere protein of Saccharomyces cerevisiae

We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP)...

متن کامل

Isolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae

In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...

متن کامل

Effect of dietary supplementation with zinc enriched yeast (Saccharomyces cerevisiae) on immunity of rainbow trout (Oncorhynchus mykiss)

Zinc (Zn) is an essential trace element in all living organisms, and the first eukaryotic Zn uptake transporter was discovered in the yeast, Saccharomyces cerevisiae. Zinc-enriched yeast is a currently available Zn supplement. The purpose of the investigation was to compare and evaluate the effect of Zn enriched yeast in rainbow trout. The fish (mean body weight 10 ± 0.5 g) were fed a commercia...

متن کامل

Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo.

Genes located near telomeres in Saccharomyces cerevisiae undergo position-effect variegation; their transcription is subject to reversible but mitotically heritable repression. This position effect and the finding that telomeric DNA is late replicating suggest that yeast telomeres exist in a heterochromatin-like state. Mutations in genes that suppress the telomeric position effect suggest that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011